

The International Association of Computer Investigative Specialists

Windows Forensics Examiner

Core Competencies

IACIS Windows Forensic Examiner (WFE) Program

The WFE core competencies described in this document are a binding set of competencies that guide the training program to ensure that the skills and knowledge points are delivered within the training program.

IACIS Windows Forensic Examiner (WFE) Core Competencies

There are six competency areas addressed in the WFE Program:

- i. Windows Virtualization Technologies and inbuilt security mechanisms
- ii. Windows Partitioning Schemes
- iii. Windows File Systems
- iv. Windows Registry
- v. Windows Artifacts
- vi. Live Memory Acquisition and Analysis

i. Windows Virtualization Technologies and inbuilt security mechanisms

- a. Understanding of virtualization concepts, definitions, and common technologies, such as Hyper-V and Windows Subsystem for Linux (WSL).
- b. Ability to identify when virtualization has been used on a suspect computer.
- c. Ability to locate, mount and examine common virtual hard drives.
- d. Knowledge of the various security features built into Windows, and the forensic implications related to these features.
- e. Understand Windows Encryption schemes, and knowledge of strategies for dealing with encryption.

ii. Windows Partitioning Schemes

- a. Ability to identify current Windows partition schemes such as MBR and GPT.
- b. Knowledge of individual structures and system areas used by each partition scheme.

- c. Ability to identify the data stored in each of the system areas and how to parse it.
- d. Understand that partition schemes can be used with different file systems and operating systems, and knowledge of which schemes are compatible with which file system.
- e. Define Globally Unique Identifier (GUID) and explain its application.

iii. Windows File Systems

- a. Understanding of file system concepts, technologies, and metadata files.
- b. Ability to parse common metadata files.
- c. Understanding of common file system objects and how they are applied in the Windows operating system.

iv. Windows Registry

- a. Understanding of the limitations of examining a live registry.
- b. Understand how to capture a live registry.
- c. Understanding of the purpose and structure of the component files that are synthesized to create the Windows registry at system boot.
- d. Knowledge of how to search for and recover registry data located in unallocated space.
- e. Understand the concept of "registry virtualization."
- f. Be able to identify and extract key data from a "dead" registry.
- g. Be able to use the Windows registry to resolve unfamiliar file types and to gather potentially relevant data about software no longer installed on the system.
- h. Understand the importance of restore points and volume shadow copy services as they relate to previous versions of component registry files.
- i. Understand the protected storage services of the registry and know how to access protected data that may be available.

v. Windows Artifacts

- a. Knowledge of common Windows artifacts and their locations.
- b. Knowledge of how the creation and longevity of various Windows artifacts are controlled by Windows registry settings.
- c. Knowledge of Windows artifacts based on known Windows installation defaults, and an understanding of the potential forensic relevance.
- d. Ability to recover "previous versions" of files as well as the ability to mount and recover data from Windows backup.
- e. Understand Windows event logs and knowledge of common event log entries that can be of forensic relevance.
- f. Knowledge of how to search for and recover various Windows artifacts from unallocated space.

vi. Live Memory Acquisition and Analysis

- a. Understand how to capture memory from a computer.
- b. Understand how to examine a memory capture for Windows based artifacts.
- c. Understand what processes are running on a live system.
- d. Knowledge of how to examine and interpret what processes were running on a Windows machine at the time the RAM was captured.
- e. Knowledge of network information available in memory and how to tie connections to a running process.
- f. Understanding of how to carve data from an acquired memory capture.

Draft of Policy Reviewed by Board:February 13, 2024Date of Policy Ratification by Board:April 3, 2024Effective Date:April 4, 2024	Submitted by:	Felicia DiPrinzio
Date of Policy Ratification by Board:April 3, 2024Effective Date:April 4, 2024	Membership Review Period:	N/A
Effective Date: April 4, 2024	Draft of Policy Reviewed by Board:	February 13, 2024
	Date of Policy Ratification by Board:	April 3, 2024
	Effective Date:	April 4, 2024
Final Version Identifier: 1.1	Final Version Identifier:	1.1